Technical Assignment #3

Existing Conditions Evaluation

Photo by Fred Martin

Clemson University Advanced Material Research Laboratory Anderson, SC

> David Anderson Mechanical Option

Tuesday, November 21, 2006

Table of Contents

Executive Summary	3
Design Objectives and Requirements	4
Outdoor and Indoor Design Conditions	5
Energy Sources and Rates	7
Cost Factors	8
Site Factors	9
Design Ventilation Requirements	10
Design Heating and Cooling Loads	10
Annual Energy Costs	11
Major Equipment	12
Basic System Operation	18
System Critique	22
References	23

Executive Summary

This report is a detailed summary of the existing mechanical systems and equipment for the Clemson University Advanced Material Research Laboratory. Major components and equipment used in the system are explained and analyzed. Design objectives and requirements for the project are also listed in order to fully understand the system.

Included in this report are the design and ventilation requirements from ASHRAE Standard 62.1-2004 for the air handling units. The design cooling and heating loads for the major equipment are calculated using Carrier's Hourly Analysis Program. HAP is used to estimate the annual consumption of energy for the AMRL as well.

Basic schematic drawings of the system were created in order to better understand and describe the existing system. Equipment schedules are also found in this report. A description of the mechanical system utilizes the schematic drawings to describe the system. The building is critiqued according to all the information gathered.

Design Objectives and Requirements

Clemson University AMRL is a two-story mixed use building located in Anderson, SC. This 111, 270 sq ft. building houses office space, laboratories, conference rooms, and clean rooms. There are 15 AHU's and 4 MAH's that condition this building. The mechanical system uses an on site boiling and chilling plant to condition air for the AHU's and VAV distribution system. AHU numbers 8, 10, and 11 uses VAV boxes to supply the space. Most of the mechanical equipment is located on the second floor, where there is a small space allocated for this on the first floor. Clemson University ARML, due to its many laboratories, requires a lot of mechanical equipment. In design, they used mostly an entire floor to house the mechanical equipment. With this, the total area of the mechanical space on the second floor is 31,841 sq. ft. After calculating the areas other than the mechanical floor space, such as the draw tower and first floor mechanical room, there is a total of 35, 626 sq. ft. of lost rentable space. Out of 117,000 sq. ft, 30.4 % of this area is given to the mechanical equipment.

The AMRL is served by 19 units, ranging from 1,000 cfm to 20,650 cfm. The amount of minimum outside air to the AHU's varying between 300 to 20,650 cfm. As noted before, the rooms serviced by AHU 8, 10, and 11 uses VAV boxes to control the climate which people occupy.

Clemson AMRL uses two 3,348 MBH gas fired boilers and one 4,094 MBH electric boiler. There are three 750 gpm/266.6 ton chillers and two 1,125 gpm/375 ton cooling towers. The air supplied to the building is from the fifteen AHU's range from 1,000-11,300 cfm and four MAH units ranging from 6,800 to 20,650 cfm.

Outdoor and Indoor Design Conditions

Outdoor Design Conditions:

The 2001 ASHRAE Fundamentals handbook provides weather data in Chapter

27. The system is not designed for any extreme conditions and may not meet indoor air

requirements in those situations.

Table 1
Latitude: 34.50
Longitude: 82.72
Elevation: 771 feet

Table 2

Summer Conditions	Design Dry Bulb: 93 °F				
Winter Conditions	Design Dry Bulb: 19 °F				

Carrier's HAP was used to simulate and model the Clemson AMRL's energy

consumption. In order to compute this, weather conditions were properly selected for the

buildings site. HAP inputs the correct weather data for the design and simulation city,

which was from 2001 ASHRAE Fundamentals Handbook. See Figure 1.

🕷 Weather Properti	es - [Anderson]	×					
Design Parameters Design Temperatures Design Solar Simulation							
Begion: U.S.A. Location: South Caro Lity: Anderson	plina	Atmospheric Clearness Number Average <u>G</u> round Reflectance 0.20					
L <u>a</u> titude: L <u>o</u> ngitude: Ele <u>v</u> ation: Summer Design <u>D</u> B Summer Coincident <u>W</u> B Summer Daily <u>R</u> ange Wjnter Design DB Wi <u>n</u> ter Coincident WB	34.5 deg 82.7 deg 771.0 ft 93.0 °F 74.0 °F 18.2 °F 19.0 °F 15.7 °F	Soil Conductivity 0.800 BTU/hr/tt/F Design Clg Calculation Months Jan ▼ to Dec ▼ Ime Zone (GMT +/-) 5.0 hours Daylight Savings ♥ Yes No Time DST Begins Apr ▼ 2 DST Ends Oct ▼ 29 Data Source: User Modified					
		OK Cancel <u>H</u> elp					

Figure 1—HAP Weather Design Parameters Indoor Design Conditions:

The following table and figure show the indoor design conditions for the AMRL.

Table 3

Indoor Air Requirement	Dry Bulb Temp:	74 °F
	RH:	50%

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	arameters [The <u>M</u> or	Design T e total nthly Max Bulb 52.0 55.0 61.0 65.8 70.8 73.8 74.8 74.8 74.8 74.8 74.8 74.8 74.8 74	emperature vertical (Min <u>Max</u> I 59.6 62.4 67.2 69.2 72.0 74.0 70.0	s] Design S fenestr	Solar Si	imulation area sh Hour 0000 0100 0200 0300 0400 0500 0500 0500 0500 0500 05	all be y Detail y Detail 55.3 54.4 53.5 52.7 52.2 52.0 52.4 53.3 54.9 57.3 60.0 63.1 66.0 68.2 ◀	ess tha √iew Jan WB 53.9 53.5 53.0 52.2 51.7 51.5 51.9 52.8 53.7 54.7 55.7 55.7 57.0 58.1 58.9 ▶		× % (of the	e gros	s wall	area.	The
					OK		Cancel	<u>H</u>	elp						

Figure 2—HAP Weather Design Temperatures

Energy Sources and Rates

The Clemson AMRL is serviced by both electricity and natural gas energy. The electric service is provided by Duke Power. The rates can be seen in Figure 3. The natural gas service is provided by Piedmont Natural Gas. The rates can be seen in Figure

4.

RATE:			
I.	Basic Facilities Charge	\$33.54	
Ш.	Demand Charge A. On-Peak Demand Charge per month For the first 2000 KW of Billing Demand per month For the next 3000 KW of Billing Demand per month For all over 5000 KW of Billing Demand per month	Summer Months June 1 – September 30 \$13.16 per KW \$11.67 per KW \$ 9.40 per KW	Winter Months October 1 – May 31 \$7.69 per KW \$6.40 per KW \$4.74 per KW
	B. Economy Demand Charge per month	\$1.01 per KW	\$1.01 per KW
III.	Energy Charge A. All On-Peak Energy per month B. All Off-Peak Energy per month	4.3937 cents per kWh 1.7336 cents per kWh	4.3937 cents per kWh 1.7336 cents per kWh
DETER	MINATION OF ON-PEAK AND OFF-PEAK HOURS	Summer Months	Winter Months October 1 – May 31
	On-Peak Period Hours	June 1 – September 30 1:00 p.m. – 9:00 p.m. Monday – Friday	6:00 a.m 1:00 p.m. Monday - Friday
	Off-Peak Period Hours	All other weekday hours and all S	

Figure 3—Duke Power Costs

Rate	Facility		Rate/Therm		Rate/Therm
Classification	Charge	Units	November/March	Units	April/October
	250.00	First 15,000	1.19349	First 15,000	1.12654
Demand (Therm)	1.90	Next 15,000	1.13290	Next 15,000	1.08143
		Next 75,000	1.08558	Next 75,000	1.05278
		Next 165,000	1.04020	Next 165,000	1.02163
		Next 330,000	0.99909	Next 330,000	0.99409
		Over 600,000	0.97052	Over 600,000	0.97052

Figure 4—Piedmont Natural Gas Costs

Cost Factors

There are several factors that could potentially influence the design decisions made with the mechanical system. Initial first cost, operating and maintenance costs, and life cycle are just to name a few. The first initial cost would be a significant factor in system selection.

The following information for system first cost was provided my IDC Architects through the master bid summary. The following break down includes all costs associated with the HVAC installation in dollars. Once the total first cost is calculated, the price per square foot can be determined.

SHV 1003 HVAC		3,024,000
SHV 1010 heat/cooling equipment	700,000	
SHV 1020 AHU/MAU	300,000	
SHV 1030 reheat coils	110,000	
SHV 1040 dehumidification	100,000	
SHV 1050 exhaust fans	70,000	
SHV 1060 ductwork	400,000	
SHV 1070 piping and supports	520,000	
SHV 1080 pumps	24,000	
SHV 1090 Phoenix Control System	400,000	
SHV 1100 insulation	350,000	
SHV 1200 LEED Commissioning	50,000	

Figure 5—Mechanical System First cost

The price/sf is calculated to be \$25.85 based on 117,000 sq. ft.

Site Factors:

The site of the AMRL building is in a off campus industrial park. The only major concern was the orientation of the building to incorporate solar gain and day lighting into the design. With this, IDC had a lot to gain since there were really no restrictions.

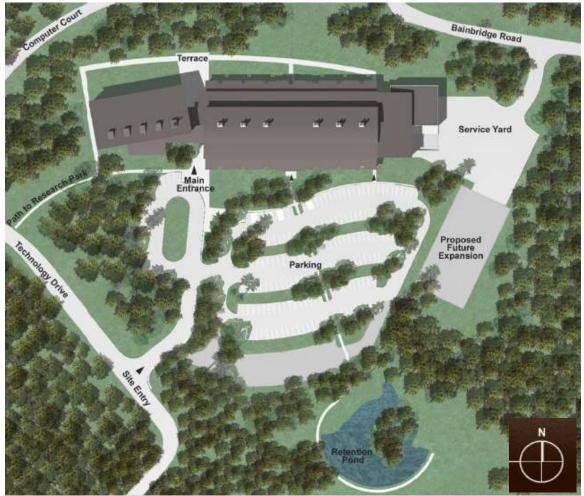


Figure 6—Building Orientation and Foot Print

Being able to incorporate day lighting and solar heat gain, reduces the load on the building tremendously. As seen in figure 7, is an illustration of how the sun can reach the inner parts of the laboratories during summer and winter months along with gaining extra heat from this during the winter months. Orienting the building to have the most glass to

the south is one way to benefit from the sun. Another is to take in consideration of the angle of the sun during summer and winter, and while orienting the building to the south, one would be able to take advantage of light entering the building during the day.

Figure 7—Daylight harvesting/solar gain

Design Ventilation Requirements:

At the specified design considerations taken in account for Tech Report One, the AHU's were to have an intake of around ten percent. All units were found to be compliant with ASHRAE Standard 62.1-2004 except AHU-11. It had a required outdoor intake greater than the design OA supply. All other units were over designed.

Design Heating and Cooling Loads:

The design heating and cooling loads were calculated in Tech Report Two. Using Carrier's HAP, I was able to obtain the loads from calculation. The numbers struck me in such a way where I believe that there is an error due to the low numbers. When the simulation was done, I was only able to obtain the peak data, and not the year-round data. This may deal with the low numbers that where achieved. In Table 4, I list the loads recorded from Tech Two. The design load for AHU 12, 13, and 15 were not calculated due to the low number associated with load.

Table 4—Estimated Design Loads nom nAP							
	Estimated D	esign Load	ds				
System	Design Load (MBH)	Load (ton)	Design Load (sf/ton)				
AHU-1	145.4	12.1	237.7				
AHU-2	101.1	8.4	353.3				
AHU-3	124.9	10.4	310.4				
AHU-4	147.4	12.3	233.8				
AHU-5	114.2	9.5	434.5				
AHU-6	116.3	9.7	425.6				
AHU-7	126.9	10.6	459.2				
AHU-8	175.3	14.6	352.5				
AHU-9	81.5	6.8	759.4				
AHU-10	82.9	6.9	682.8				
AHU-11	140.3	11.7	426.9				
AHU-12	7.1	0.6					
AHU-13	3.4	0.3					
AHU-14	14	1.2	440.0				
AHU-15	6.2	0.5					
MAH-1	391.2	32.6	598.9				
MAH-2	413.9	34.5	591.3				
MAH-3	417.7	34.8	589.5				
MAH-4	389.8	32.5	589.2				

Table 4-Estimated Design Loads from HAP

Annual Energy Costs

Annual Energy Costs were estimated using Carrier's HAP. Table 4 below illustrates the cost of the AMRL.

Component	Clemson AMRL (\$)
HVAC Components	
Electric	4,241,147
Natural Gas	9,545
HVAC Sub-Total	4,250,692
Non-HVAC Components	
Electric	2,047,133
Non-HVAC Sub-Total	2,047,133
Grand Total	6,297,825

Table 4—Calculated Costs

Major Equipment:

Air Handling Units/ Make-Up Air Handling Units

Fifteen air handling units with three of them being VAV's and 4 MAH units serve Clemson AMRL. They provide conditioned air to offices, laboratories, conference areas, and clean rooms. Table 5 shows the operating conditions for the AHU's. The Make-Up Air Handling Units are also shown in table 5. They were needed to condition the additional space since the air exhausted through the fume hoods would need replaced.

			RETURN FAN						
				MAX	MIN				
EQUIP	LOCATION		FAN	B/A	B/A				
NO.	ROOM NO.	SERVES	TYPE	CFM	CFM	E.S.P.	T.S.P.	HP	V/PH/HZ
AHU-03-01	A2B200	LAB OFFICES	AF	2,200	2,200	0.75	0.98	1.5	460/3/60
AHU-03-02	A2C200	LAB OFFICES	AF	2,700	2,700	0.75	0.99	1.5	460/3/60
AHU-03-03	A2B200	LAB OFFICES	AF	3,900	3,900	0.75	0.97	2.0	460/3/60
AHU-03-04	A2C200	LAB OFFICES	AF	3,400	3,400	0.75	0.93	1.5	460/3/60
AHU-03-05	A2B200	LASER LABS	AF	2417	0	1.00	1.23	1.5	460/3/60
AHU-03-06	A2C200	LASER LABS	AF	2,677	250	1.00	1.23	1.5	460/3/60
AHU-03-07	A3A300	CU OFFICES (L1)	AF	4,600	4,600	1.00	1.29	5.0	460/3/60
AHU-03-08	A3A300	LOBBY	AF	9,550	9,550	1.00	1.16	7.5	460/3/60
AHU-03-09	A3A300	MICROSCOPY	•			-		-	
AHU-03-10	A3A300	CU OFFICES (L2)	AF	6,200	6,200	0.75	0.93	5.0	460/3/60
AHU-03-11	A3A300	SCRA OFFICES (L2)	AF	6,550	6,550	0.75	0.93	5.0	460/3/60
AHU-03-12	A2C200	HAZARDOUS MAT	FC	750	550	0.75	0.99	1.0	460/3/60
AHU-03-13	A2B200	CLEANROOM	•			-			
AHU-03-14	A2C200	STM	•		•	-			-
AHU-03-15	A2C200	DRAW TOWER	AF	4,800	4,800	1.00	1.17	3.0	460/3/60
MAH-01-01	A2B200	VETLABS		-		-		-	-
MAH-01-02	A2C200	VETLABS				-		-	-
MAH-01-03	A2B200	VETLABS				-		-	-
MAH-01-04	A2C200	VETLABS	•		•		•		-

Table 5—Air Handling Unit Schedule

Table 5—continued

		ENERGY RECOVERY COIL												
	FLOW	AIR P.D.	VATER P.D.			'RE-CO						EATING		
EQUIP			=.	FLIT				DTUU	EL IT					
NO.	GPM	IVG	FT	EVT	LVT	EAT	LAT	BTUH	EVT	LVT	EAT	LAT	BTUH	
AHU-03-01	•	•	•	-	-	-	-	-	-	-	-	-	-	
AHU-03-02	•	-	•	-	-	-	-	•	-	-	-	-	-	
AHU-03-03	•	-	-	-	-	-	-	•	-	-	-	-	-	
AHU-03-04	•	-		•	-	•	•		-	•		-	-	
AHU-03-05		-		•	-	•	-		-	•		-	-	
AHU-03-06	•	-		•	-	•	•		-	•		-	-	
AHU-03-07	•	-		•	-	•	•		-	•	-	-	-	
AHU-03-08	•	-		•	-	•	•		-	•	-	-	-	
AHU-03-09	-	-	-	•	-		-	-	-	•	•	-	-	
AHU-03-10	-	-	-	•	-	•	-	-	-	•	•	-	-	
AHU-03-11	-	-	-	-	-	-	-	-	•	•	•	•	-	
AHU-03-12	-	-	-	-	-	-	-	-	-	•	-	-	-	
AHU-03-13	-	-	-	-	-	-	-	-	-	•	-	-	-	
AHU-03-14	-	-	-	-	-	-	•	-	•	•	•	•	-	
AHU-03-15	-	-	-	-	-	-	•	-	•	•	•	•	-	
MAH-01-01	56.3	0.50	10.00	78.2	86.8	95.0	84.6	221,379	49.3	32.3	10.0	30.5	435,132	
MAH-01-02	56.3	0.50	10.00	78.2	86.8	95.0	84.6	231,300	49.3	32.3	10.0	30.5	454,632	
MAH-01-03	56.3	0.50	10.00	78.2	86.8	95.0	84.6	234,135	49.3	32.3	10.0	30.5	460,204	
MAH-01-04	56.3	0.50	10.00	78.2	86.8	95.0	84.6	217,127	49.3	32.3	10.0	30.5	426,775	

Table 5—continued

			PRE	HEAT	COI	L		
					AIR	WATER		
EQUIP				FLOW	P.D.	P.D.		
NO.	BTUH	EWT	LWT	GPM	IVG	FT	EAT	LAT
AHU-03-01	27,539	200.0	160.0	1.4	0.11	0.11	45.5	51.8
AHU-03-02	23,924	200.0	160.0	1.2	0.13	0.47	48.4	53.3
AHU-03-03	5,213	200.0	160.0	0.3	0.10	0.50	52.9	53.7
AHU-03-04	14,372	200.0	160.0	0.7	0.09	7.32	51.1	53.6
AHU-03-05	282,871	200.0	160.0	14.1	0.11	11.49	15.2	56.6
AHU-03-06	228,633	200.0	160.0	11.4	0.11	11.06	18.0	54.3
AHU-03-07	-	-	-	-	-	-	65.6	65.6
AHU-03-08	-	-	-	-	-	-	64.6	64.6
AHU-03-09	-	-	-	-	-		53.8	53.8
AHU-03-10	-	-	-	-	-		63.8	63.8
AHU-03-11	-		•	-	-		65.8	65.8
AHU-03-12	108,977	200.0	160.0	5.4	0.26	0.29	25.0	57.4
AHU-03-13	19,906	200.0	160.0	1.0	0.18	0.09	33.3	44.8
AHU-03-14	-		•	-	-		53.6	53.6
AHU-03-15	-		•	-			54.0	54.0
MAH-01-01	1,006,270	200.0	160.0	50.3	0.10	3.71	10.0	57.5
MAH-01-02	1,051,365	200.0	160.0	52.6	0.11	4.04	10.0	57.5
MAH-01-03	1,064,249	200.0	160.0	53.2	0.11	4.15	10.0	57.5
MAH-01-04	986,943	200.0	160.0	49.3	0.09	3.57	10.0	57.5

Table 5—continued

		COOLING COIL												
						AIR	WATER							
EQUIP	SENS	TOTAL			FLOW	P.D.	P.D.	E/	AT	L/	AT			
NO.	BTUH	BTUH	EWT	LWT	GPM	IVG	FT	DB	٧B	DB	٧B			
AHU-03-01	134,626	198,774	42.0	54.0	33.1	0.59	12.60	82.3	67.6	51.8	51.6			
AHU-03-02	140,427	204,576	42.0	54.0	34.1	0.69	13.26	81.0	66.7	53.3	52.3			
AHU-03-03	149,566	213,810	42.0	54.0	35.6	0.65	4.57	79.1	65.4	53.7	53.3			
AHU-03-04	140,515	204,730	42.0	54.0	34.1	0.56	4.22	79.7	65.8	53.6	53.4			
AHU-03-05	280,136	440,141	42.0	54.0	73.4	0.81	15.09	92.3	74.2	56.6	56.6			
AHU-03-06	254,388	417,829	42.0	54.0	69.6	0.82	15.43	93.8	74.9	54.3	54.3			
AHU-03-07	104,840	120,074	42.0	54.0	20.0	0.44	3.91	76.7	62.3	55.8	53.8			
AHU-03-08	255,109	295,020	42.0	54.0	49.2	0.61	4.96	76.2	62.2	55.6	53.4			
AHU-03-09	365,695	504,221	42.0	54.0	84.0	1.41	7.75	76.5	62.9	47.7	47.6			
AHU-03-10	155,555	190,597	42.0	54.0	31.8	0.44	5.78	77.2	63.0	55.0	53.0			
AHU-03-11	161,977	184,473	42.0	54.0	30.7	0.45	5.47	75.9	61.8	55.2	53.0			
AHU-03-12	120,096	181,087	42.0	54.0	30.2	0.83	10.28	90.3	72.9	57.4	57.3			
AHU-03-13	71,790	119,775	41.0	57.0	15.0	1.17	6.34	87.0	70.5	44.8	44.7			
AHU-03-14	23,731	36,022	42.0	54.0	6.0	0.28	8.93	81.5	66.7	48.0	47.9			
AHU-03-15	201,585	269,604	42.0	54.0	44.9	0.72	14.71	77.4	64.3	51.7	51.3			
MAH-01-01	812,280	1,443,094	42.0	54.0	240.5	0.97	11.02	94.4	75.2	57.5	54.7			
MAH-01-02	848,924	1,508,053	42.0	54.0	251.3	1.16	17.78	94.4	75.2	57.5	54.7			
MAH-01-03	846,944	1,513,754	42.0	54.0	252.3	1.07	12.01	94.4	75.2	57.5	54.9			
MAH-01-04	785,010	1,403,964	42.0	54.0	234.0	0.91	10.49	94.4	75.2	57.5	54.9			

Table 5—continued

			SU	PPLY	FAN	
	(4)	DESIGN				
EQUIP	FAN	SłA				O/A
NO.	TYPE	CFM	E.S.P.	T.S.P.	HP	CFM
AHU-03-01	AF	4,000	1.25	3.54	7.5	1,800
AHU-03-02	AF	4,500	1.25	3.69	7.5	1,800
AHU-03-03	AF	5,700	1.25	3.68	10.0	1,800
AHU-03-04	AF	5,200	1.25	3.49	7.5	1,800
AHU-03-05	AF	6,300	1.25	5.80	10.0	6,300
AHU-03-06	AF	5,800	1.25	5.82	10.0	5,550
AHU-03-07	AF	5,000	1.75	3.90	7.5	400
AHU-03-08	AF	10,600	1.75	3.94	15.0	1,050
AHU-03-09	AF	11,300	1.75	6.54	20.0	3,350
AHU-03-10	AF	7,000	1.75	3.79	10.0	800
AHU-03-11	AF	7,100	1.75	3.82	10.0	550
AHU-03-12	FC	3,100	1.00	3.77	5.0	2,550
AHU-03-13	AF	1,600	1.00	1.35	3.0	1,100
AHU-03-14	AF	1,000	2.00	5.01	3.0	300
AHU-03-15	AF	6,800	1.50	3.80	10.0	2,000
MAH-01-01	AF	19,525	2.00	4.24	25.0	19,525
MAH-01-02	AF	20,400	2.00	4.49	25.0	20,400
MAH-01-03	AF	20,650	2.00	4.42	25.0	20,650
MAH-01-04	AF	19,150	2.00	4.15	25.0	19,150

Cooling Towers

There are two 375 ton, 1,125 gpm cooling towers located on site. The cooling towers provide condenser water for the 15 AHU's. Below in Table 6, the operating conditions and additional information is provided.

							FAN	BASINI	HEATER		
EQUIP	LOCATION	CAPACITY	FLOW	EWT	LVT	LWT	MOTOR				BASIS
NO.	ROOM NO.	TONS	GPM	F	FDB	FVB	HP	QTY	KW/EA	V/PH/HZ	OF DESIGN
CT-14-01	EQUIPMENT YARD	375	1,125	95.0	85.0	78.0	15	2	12	460/3/60	MARLEY NC8305FL-2
CT-14-02	EQUIPMENT YARD	375	1,125	95.0	85.0	78.0	15	2	12	460/3/60	MARLEY NC8305FL-2

Chillers

There are three 266.6 ton, 750 gpm chillers located at the AMRL. The chillers are

explained in Table 7 along with some additional information.

Table 7—	-Chiller	Schedule
----------	----------	----------

				COND	ENSER			EVAPO	RATOR				
EQUIP	LOCATION	NOMINAL CAPACITY	FLOV	VPD	EVT	LWT	FLOV	VPD	EVT	LVT			BASIS
						-			E W I				
NO.	ROOM NO.	TONS	GPM	FT H₂0	F	F	GPM	FT H ₂ 0	F	F	KW/TON	V/PH/HZ	OF DESIGN
CH-11-01	A1D116	266.6	750	9.6	85.0	95.1	531	9.3	54.0	42.0	0.633	460/3/60	TRANE RTHC
CH-11-02	A1D116	266.6	750	9.6	85.0	95.1	531	9.3	54.0	42.0	0.633	460/3/60	TRANE RTHC
CH-11-03	A1D116	266.6	750	9.6	85.0	95.1	531	9.3	54.0	42.0	0.633	460/3/60	TRANE RTHC
CH-40-01	EQUIPMENT YARD	50			•	•	100	7.2	54.0	42.0	1.205	460/3/60	TRANE CGAF

Boilers

There are two 3,348 MBH gas fired boilers and one 4,094 MBH electric boiler

located at Clemson's AMRL. Below in table 8, they are further explained.

Table 8—Boiler Schedule

		CAP	ACITY			MAX			BLOVER		
EQUIP	LOCATION	INPUT	OUTPUT			FLOV	EVT	LWT	MOTOR	BURNER	BASIS
NO.	ROOM NO.	MBH	MBH	BoHP	FUEL	GPM	F	F	HP	VIPHIHZ	OF DESIGN
BLR-15-01	A1D116	4,200	3,348	100	NG	167	160	200	1.5	208/3/60	HURST SERIES 400
BLR-15-02	A1D116	4,200	3,348	100	NG	167	160	200	1.5	208/3/60	HURST SERIES 400
BLR-15-03	A1D116	1,200 KW	4,094	122	ELEC	205	160	200	1,444 A	480/3/60	PRECISION HW30D-1200D

Energy Recovery Coil

Clemson's AMRL uses three energy recovery coils. They provide cooling for the condenser water loop from the cooling towers and heat for the hot water loop from the boilers. Below, table 9 illustrates more information.

 Table 9—Energy Recovery Coil Schedule

	ENERGY RECOVERY COIL SCHEDULE																	
		DESIGN AIR	MAX AIR	MAX	MAX AIR	VATER		PRE-COOLING PRE-HEATING									NG	
EQUIP	LOCATION	FLOW	FLOW	VELOCITY	P.D.	FLOW	ROVS	P.D.										
NO.	ROOM NO.	CFM	CFM	FPM	IVG	GPM	QTY	FT	EWT	LWT	EAT	LAT	BTUH	EWT	LWT	EAT	LAT	BTUH
ERC-20-01	A3B300	35,000	44,500	1,000	1.25	75.0	8	15.0	86.82	78.24	72.0	80.0	302,281	32.26	49.3	72.0	56.35	594,309
ERC-20-02	A3B300	35,000	44,500	1,000	1.25	75.0	8	15.0	86.82	78.24	72.0	80.0	302,281	32.26	49.3	72.0	56.35	594,309
ERC-20-03	A3C300	35,000	44,500	1,000	1.25	75.0	8	15.0	86.82	78.24	72.0	80.0	302,281	32.26	49.3	72.0	56.35	594,309

Variable Air Volume Boxes

The conditioned air from AHU 8, 10, and 11 is ducted to several variable air volume (VAV) boxes, which are located in the ceiling plenum. They are selected in ranges of cfm. There are also different gpm amounts for the hot water reheat coils to each of the VAV boxes. Below in Table 10, the operating conditions are shown along with some other additional information.

Table 10-	-Variable	Air Volum	e Box Schedule	
10010 10	, allaolo	i ili voiulli	o Don Seneaule	

				нν				MAX	MIN			COIL
EQUIP	LOCATION			HEATING	EWT	LWT	FLOW	SIA	SłA	EAT	SAT	LAT
NO.	ROOM NO.	AHU No.	SERVES	BTUH	F	F	GPM	CFM	CFM	F	F	F
VVR-06-04	A1A103	AHU-8	LOBBY (SOUTH)	34,220	200.0	160.0	1.7	2,250	1,125	55.6	83.6	83.6
VVR-06-05	A1A107	AHU-8	LOBBY (SOUTH)	45,005	200.0	160.0	2.3	1,500	750	55.6	110.9	110.9
VVR-06-06	A1A134	AHU-8	ELECITELE	4,551	200.0	160.0	0.2	550	275	55.6	70.9	70.9
VVR-06-07	A2A253	AHU-10	BREAK/COPY/STOR	6,415	200.0	160.0	0.3	630	315	55.0	73.8	73.8
VVR-06-08	A2A229	AHU-10	CORRIDOR	8,628	200.0	160.0	0.4	750	375	55.0	76.2	76.2
VVR-06-09	A2A243	AHU-10	ELECITELE	4,523	200.0	160.0	0.2	525	263	55.0	70.9	70.9
VVR-06-10	A2A223	AHU-11	RECEPT/WAITING	4,553	200.0	160.0	0.2	470	235	55.2	73.1	73.1
VVR-06-11	A2A221	AHU-11	OPEN AREA/CORRIDOR	6,018	200.0	160.0	0.3	620	310	55.2	73.1	73.1
VVR-06-12	A2A202	AHU-11	LOBBY/RESTROOMS	8,391	200.0	160.0	0.4	800	400	55.2	74.5	74.5
VVR-06-13	A2A222	AHU-11	CONFERENCE ROOM	7,770	200.0	160.0	0.4	850	425	55.2	72.0	72.0
VVR-06-14	A2A221	AHU-11	STOR/OPEN OFFICE	11,249	200.0	160.0	0.6	1,210	605	55.2	72.3	72.3
VVR-06-15	A2A219	AHU-11	REPRO/SERVER	2,051	200.0	160.0	0.1	200	100	55.2	74.1	74.1
VVR-06-16	A2A218	AHU-11	CONFERENCE ROOM	2,646	200.0	160.0	0.1	290	145	55.2	72.0	72.0
VVR-06-17	A2A224	AHU-11	DIRECTOR ASST	1,623	200.0	160.0	0.1	150	75	55.2	75.1	75.1
VVR-06-18	A2A230	AHU-11	ADMIN	1,623	200.0	160.0	0.1	150	75	55.2	75.1	75.1
VVR-06-19	A2A233	AHU-11	ADMIN ASST	1,623	200.0	160.0	0.1	150	75	55.2	75.1	75.1
VVR-06-20	A2A250	AHU-11	INDIVIDUAL OFFICE	1,623	200.0	160.0	0.1	150	75	55.2	75.1	75.1
VVR-06-21	A2A249	AHU-11	INDIVIDUAL OFFICE	1,623	200.0	160.0	0.1	150	75	55.2	75.1	75.1

Pumps

There are several different types of pumps which service the AMRL. Table 11

below shows what pumps serve what areas of the building.

Table 11—Pump Schedule

			-			
EQUIP	LOCATION		FLOW	T.D.H.	MOTOR	MOTOR
NO.	ROOM NO.	SERVICE	GPM	FT. H20	HP	RPM
PMP-11-01	A1D116	PRIMARY CHILLED WATER PUMP	500	30	10	1,750
PMP-11-02	A1D116	PRIMARY CHILLED WATER PUMP	500	30	10	1,750
PMP-11-03	A1D116	PRIMARY CHILLED WATER PUMP	500	30	10	1,750
PMP-40-01	A1D116	PRIMARY PROCESS CHILLED WATER PUMP	100	30	2	1,750
PMP-12-01	A1D116	SECONDARY CHILLED WATER PUMP	1600	75	40	1,750
PMP-12-02	A1D116	SECONDARY CHILLED WATER PUMP	1600	75	40	1,750
PMP-14-01	A1D116	CONDENSER WATER PUMP	750	40	15	1,750
PMP-14-02	A1D116	CONDENSER WATER PUMP	750	40	15	1,750
PMP-14-03	A1D116	CONDENSER VATER PUMP	750	40	15	1,750
PMP-15-01	A1D116	PRIMARY HOT WATER PUMP	160	30	3	1,750
PMP-15-02	A1D116	PRIMARY HOT WATER PUMP	160	30	3	1,750
PMP-15-03	A1D116	PRIMARY HOT WATER PUMP	205	30	5	1,750
PMP-15-04	A1D116	BOILER RECIRC PUMP	16	30	3/4	1,750
PMP-15-05	A1D116	BOILER RECIRC PUMP	16	30	3/4	1,750
PMP-15-06	A1D116	BOILER RECIRC PUMP	20	30	3/4	1,750
PMP-03-01	A2B200	PREHEAT COIL RECIRC PUMP	1.4	25	1/2	1,750
PMP-03-02	A2C200	PREHEAT COIL RECIRC PUMP	1.2	25	1/2	1,750
PMP-03-03	A2B200	PREHEAT COIL RECIRC PUMP	0.3	25	1/2	1,750
PMP-03-04	A2C200	PREHEAT COIL RECIRC PUMP	0.7	25	1/2	1,750
PMP-03-05	A2B200	PREHEAT COIL RECIRC PUMP	11.6	25	1/2	1,750
PMP-03-06	A2C200	PREHEAT COIL RECIRC PUMP	11.4	25	1/2	1,750
PMP-03-12	A2C200	PREHEAT COIL RECIRC PUMP	5.4	25	1/2	1,750
PMP-03-13	A2B200	PREHEAT COIL RECIRC PUMP	1.0	25	1/2	1,750
PMP-01-01	A2B200	PREHEAT COIL RECIRC PUMP	50	25	1/2	1,750
PMP-01-02	A2C200	PREHEAT COIL RECIRC PUMP	53	25	1/2	1,750
PMP-01-03	A2B200	PREHEAT COIL RECIRC PUMP	53	25	1/2	1,750
PMP-01-04	A2C200	PREHEAT COIL RECIRC PUMP	49	25	1/2	1,750
PMP-16-01	A1D116	SECONDARY HOT WATER PUMP	480	75	15	1,750
PMP-16-02	A1D116	SECONDARY HOT WATER PUMP	480	75	15	1,750
PMP-20-01	A3B300	ENERGY RECOVERY WATER PUMP	225	60	7.5	1,750
PMP-41-01	A1D116	SECONDARY PROCESS CHILLED WATER PUMP	120	90	7.5	1,750
PMP-41-02	A1D116	SECONDARY PROCESS CHILLED WATER PUMP	120	90	7.5	1,750
PMP-42-01	A1A103	TERTIARY PROCESS CHILLED WATER PUMP	30	15	1/2	1,750

Basic System Operation:

Clemson's AMRL consists of both air-side and water-side mechanical equipment and systems. The air-side consists of AHU's, MAH's, and VAV boxes. An example of the air-side schematic is shown in Figure 8. The water-side operation consists of a hot water system and a condenser water system. The hot water system is shown in Figure 9 and the condenser water system is shown in Figure 10.

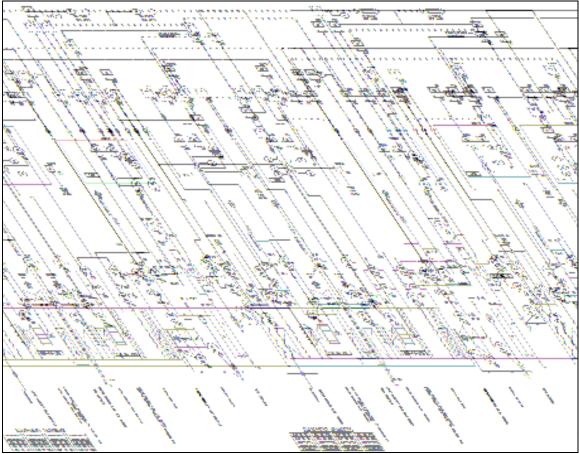


Figure 8—Air-side schematic for a sample of 4 AHU's

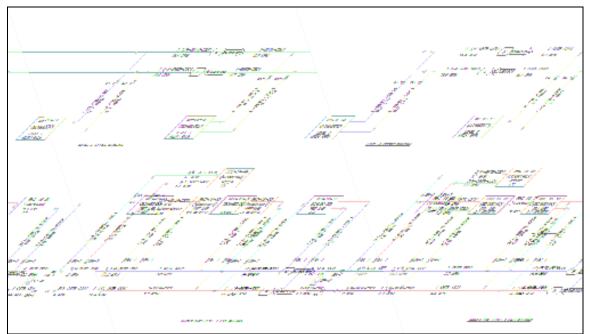


Figure 9—Sample of Hot Water Schematic

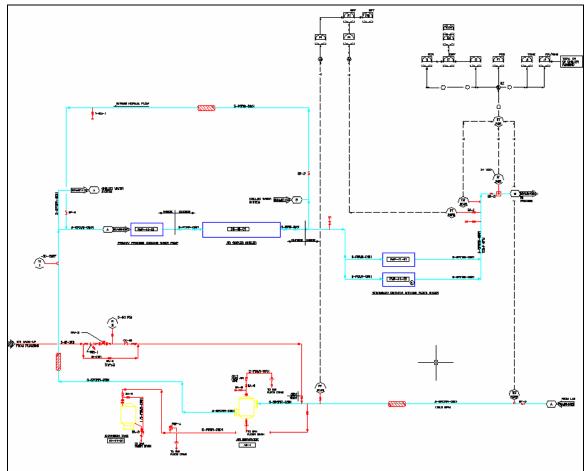


Figure 10—Sample of Condenser Water Schematic

The following two figures, Figure 11 and 12, show how the system is supplied from a section point of view. This allows one to gain a better understanding of the mechanical system setup at the AMRL.

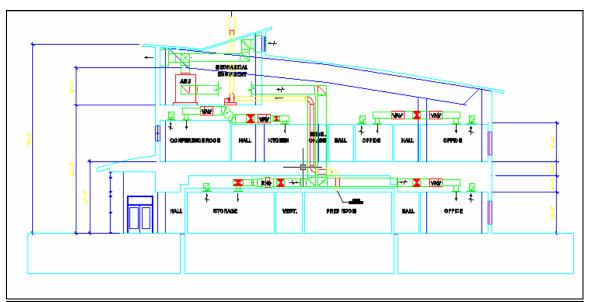


Figure 11—Section view of mechanical system

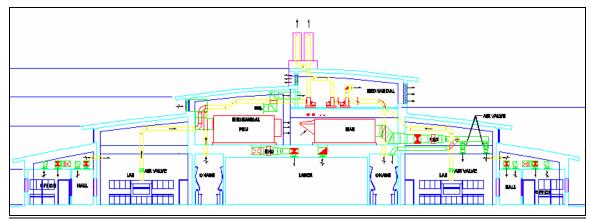


Figure 12—Section view of mechanical system

System Critique:

The mechanical system at Clemson University's AMRL could be considered satisfactory. The chosen systems seem to be adequate in design. Others, namely the oversized AHU's could be reevaluated and redesigned. Some other forms of design could be incorporated to bring down energy costs in the building. First cost was a factor in selecting a design, but not only that, since Clemson would be the tenant, long term costs were also incorporated.

The system will use a large amount of energy, especially electric to condition the spaces. Although IDC met all design requirements except for AHU-11, it would have been possible to make a more energy efficient system given different circumstances. Incorporating heat pumps, since location is ok for such design, would be one way of making this system more energy efficient. During the proposal stage of thesis, I plan on focusing on a more energy efficient system, as opposed to up front cost and time. With this in mind, I plan on improving an already well-designed system with key ideas in mind, without sacrificing air quality issues.

References

- 2001 ASHRAE Handbook—Fundamentals. Inch-Pound Edition ASHRAE, Inc. Atlanta, GA. 2001.
- Anderson, David. Technical Assignment #1: ASHRAE Standard 62.1-2004 Ventilation Compliance Evaluation Report. October 5, 2006.
- Anderson, David. Technical Assignment #2: Building and Plant Energy Analysis Report. October 27, 2006.
- ANSI/ASHRAE/IESNA Standard 90.1-2004—Energy Standard for Buildings Except Low-Rise Residential Buildings. ASHRAE, Inc. Atlanta, GA. 2004.
- ANSI/ASHRAE Standard 62.1-2004—Ventilation for Acceptable Indoor Air Quality. ASHRAE, Inc. Atlanta, GA. 2004

Hourly Analysis Program v.4.20a. Carrier Corporation. 2004